

Intercontinental Journal of Pharmaceutical Investigations and Research (ICJPIR)

ICJPIR | Vol.11 | Issue 3 | Jul - Sept -2024 www.icjpir.com

DOI: https://doi.org/10.61096/icjpir.v11.iss3.2024.83-94

ISSN: 2349-5448

Review

Analytical Instrumental and In Vitro Evaluation of Irinotecan Gum Ghatti Nano Particles

Saju Rajappan*, N.S. Surendiran

Shri Jagdishprasad Jhabarmal Tibrewala University, Jhunjhunu, Rajasthan Nirmala College of Health Sciences, meloor, chalakudy, Kerala.

*Author for Correspondence: Saju Rajappan

Email: saivaishnavyp@gmail.com

Check for updates	Abstract
Published on: 14 Sep 2024	The present work aims to develop a simple, sensitive, robust, and reliable method for estimating irinotecan GGNPs in physiological media to assess its permeability profile using the everted gut sac technique in the presence of various
Published by: DrSriram Publications	modulators. Separation was achieved using a column with a mobile phase consisting of acetonitrile and 0.045 μ M sodium dihydrogen phosphate dihydrate buffer containing ion-pair agent heptane sulphonic acid sodium salt (0.0054 μ M), pH 3. The flow rate was maintained at 1 ml/min, and analysis was performed at 254.9 nm using a detector.
2024 All rights reserved.	Calibration data showed an excellent linear relationship between peak area and drug concentration ($r^2 = 0.9999$). The mobile phase was delivered at a flow rate of 0.3 ml/min with ultraviolet detection at 220 nm. The run time was 8 minutes, within which irinotecan and its seven impurities and degradation products were satisfactorily
Creative Commons Attribution 4.0 International License.	separated. The developed method was validated as per ICH guidelines with respect to specificity, linearity, limit of detection, limit of quantification, accuracy, precision, and robustness. In conventional IR spectroscopy of nanomaterials, the capability of characterizing surface chemistry is limited. To overcome these limitations, we recorded IR spectra of different solvents inside a fixed bed of the nanopowder to be tested. Using water and different alcohols as solvents enables the characterization of the nanomaterial's surface chemistry via the molecular interactions affecting the hydrogen-bonding network in the solvent. This method was also suitable for the assay
	determination of irinotecan hydrochloride in pharmaceutical dosage forms. Keywords: Irinotecan GGNPs. mobile phase, Linearity, Chromatographic separation, ICH and pharmaceutical dosage.

INTRODUCTION

The analytical instrumentation and in vitro evaluation of irinotecan-loaded Gum Ghatti nanoparticles represent a significant advancement in the field of drug delivery systems. Irinotecan, a potent chemotherapeutic agent used primarily in the treatment of colorectal cancer, often faces challenges related to its solubility, stability, and targeted delivery. The development of nanoparticle-based delivery systems aims to overcome these limitations, enhancing the drug's efficacy and reducing its side effects. Gum Ghatti, a natural polysaccharide derived from the Anogeissus latifolia tree, has gained attention due to its biocompatibility, biodegradability, and

potential as a drug carrier. By encapsulating irinotecan within Gum Ghatti nanoparticles, researchers aim to improve the drug's bioavailability and achieve controlled release¹.

The analytical characterization of these nanoparticles involves various instrumental techniques to determine their physicochemical properties, including particle size, surface morphology, drug loading efficiency, and release kinetics. High-Performance Liquid Chromatography (HPLC) is often employed to quantify irinotecan and assess its stability within the nanoparticle formulation. Additionally, techniques such as Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and Fourier Transform Infrared Spectroscopy (FTIR) provide insights into the size distribution, surface characteristics, and molecular interactions of the nanoparticles. In vitro studies are crucial for evaluating the biological performance of irinotecan-loaded Gum Ghatti nanoparticles. These studies include assessing the cytotoxicity, cellular uptake, and drug release profile in physiological conditions. The everted gut sac method, for instance, can be utilized to investigate the permeability and absorption of the drug from the nanoparticles in the presence of various P-glycoprotein (P-gp) modulators, which play a significant role in drug resistance mechanisms. Overall, the integration of advanced analytical techniques and comprehensive in vitro evaluations offers a robust framework for optimizing irinotecan-loaded Gum Ghatti nanoparticles. This approach not only enhances our understanding of the formulation's performance but also paves the way for developing more effective and targeted cancer therapies. n vitro evaluation of irinotecan, a chemotherapeutic agent primarily used in the treatment of colorectal cancer, is a critical component in understanding its pharmacological properties and optimizing its clinical use².

Irinotecan exerts its anticancer effects by inhibiting topoisomerase I, an enzyme essential for DNA replication, ultimately leading to DNA damage and apoptosis in rapidly dividing cancer cells. Despite its effectiveness, irinotecan presents challenges related to its solubility, stability, and side effects, necessitating thorough in vitro studies to enhance its therapeutic profile. In vitro studies involve various experimental techniques to assess the biological activity, cytotoxicity, and mechanisms of action of irinotecan in a controlled laboratory environment. These studies provide valuable insights into the drug's interactions with cancer cells, its metabolic pathways, and the factors influencing its efficacy and toxicity. Key aspects of in vitro evaluation of irinotecan include: These assays measure the ability of irinotecan to kill cancer cells. Common methods include the MTT assay, which assesses cell viability based on metabolic activity, and the clonogenic assay, which evaluates the drug's impact on the reproductive capability of cancer cells. These assays help determine the effective concentration range and the drug's potency against different cancer cell lines. Investigating how irinotecan is taken up by cancer cells and its intracellular distribution is crucial for understanding its mechanism of action. Techniques such as fluorescence microscopy and flow cytometry can be used to visualize and quantify irinotecan's localization within cells. Understanding how irinotecan induces cell death involves examining the drug's effect on cell cycle progression, DNA damage, and apoptosis. Western blotting and PCR can be used to analyze the expression levels of key proteins and genes involved in these processes. In vitro studies also explore the factors contributing to irinotecan resistance, such as the overexpression of efflux pumps like P-glycoprotein (P-gp). Investigating the impact of P-gp modulators on irinotecan's efficacy can inform strategies to overcome drug resistance³.

These studies evaluate the drug's stability, solubility, and release profile in physiological conditions. Techniques such as High-Performance Liquid Chromatography (HPLC) are employed to quantify irinotecan and its metabolites in biological samples. By providing a comprehensive understanding of irinotecan's biological activity and interactions, in vitro studies play a pivotal role in optimizing its formulation, enhancing its therapeutic efficacy, and minimizing adverse effects. These studies lay the groundwork for subsequent in vivo evaluations and clinical trials, ultimately contributing to the development of more effective cancer treatment strategies. infrared (IR) spectroscopy and Liquid Chromatography-Mass Spectrometry (LC-MS) are powerful analytical techniques widely used in various fields, including pharmaceuticals, environmental analysis, food safety, and materials science. Each technique offers unique insights into the composition and characteristics of substances, making them invaluable tools for researchers and analysts⁴.

Infrared spectroscopy is a technique that measures the absorption of infrared light by a sample, providing information about the molecular vibrations and the functional groups present. When molecules absorb infrared radiation, their bonds vibrate at specific frequencies, which correspond to the energies of the IR light absorbed. These vibrations create a unique spectrum that acts as a molecular fingerprint of the substance.IR spectroscopy is used to identify functional groups and chemical bonds within molecules, helping to determine the molecular structure of a compound. The technique can quantify the concentration of specific functional groups within a sample, useful in quality control and formulation analysis⁵.

IR spectroscopy is employed in studying polymers, nanoparticles, and other materials to understand their composition and properties. Being a non-destructive technique, it allows for the analysis of samples without altering or consuming them, preserving the sample for further testing. Liquid Chromatography-Mass Spectrometry (LC-MS) combines the separation capabilities of liquid chromatography with the detection power of mass spectrometry. Liquid chromatography first separates the components of a mixture based on their interactions with a stationary phase and a mobile phase. The separated components are then introduced into the mass spectrometer, where they are ionized, and their mass-to-charge ratios (m/z) are measured. LC-MS is highly effective for

analyzing complex mixtures, providing detailed information on the individual components, including their molecular weights and structures. It offers high sensitivity and specificity for quantifying trace amounts of compounds in various samples, essential in pharmacokinetics and environmental monitoring. LC-MS helps in identifying and elucidating the structure of unknown compounds, making it invaluable in drug discovery and metabolomics. Widely used in clinical and pharmaceutical research to analyze biological samples, LC-MS aids in studying metabolism, biomarker discovery, and therapeutic drug monitoring. While IR spectroscopy provides detailed information about molecular vibrations and functional groups, LC-MS offers precise mass and structural data. Combining these techniques can give a comprehensive understanding of a substance's chemical composition and structure, enhancing the accuracy and depth of analytical investigations. For example, IR spectroscopy can confirm the presence of specific functional groups, while LC-MS can determine the exact molecular weight and structure of the compound, providing a holistic view of the sample. In summary, IR spectroscopy and LC-MS are complementary techniques that together provide a robust analytical approach for identifying, quantifying, and characterizing chemical substances, significantly advancing research and development across multiple scientific disciplines^{6,7}.

MATERIALS AND METHODS

Infrared (IR) spectroscopy

Infrared (IR) spectroscopy is a widely used analytical technique to identify and study chemical compounds based on their absorption of infrared light, which causes molecular vibrations. The procedure for performing IR spectroscopy generally involves several key steps: sample preparation, instrument calibration, sample analysis, and data interpretation. Here's a detailed procedure: The sample preparation method depends on the physical state of the sample (solid, liquid, or gas). Grind a small amount of the solid sample with potassium bromide (KBr) powder in an agate mortar to a fine consistency. Press the mixture into a thin, transparent pellet using a hydraulic press. Place the solid sample directly onto the ATR crystal. This method requires minimal sample preparation. Place a drop of the liquid sample directly onto the IR window or ATR crystal. Dissolve the sample in an appropriate solvent that does not absorb IR light in the region of interest (e.g., chloroform or carbon tetrachloride). Place a drop of the solution on the IR window or ATR crystal. Introduce the gas sample into a gas cell equipped with IR-transparent windows (e.g., KBr or CaF2). Ensure the cell is properly sealed Run a background spectrum without the sample to account for atmospheric moisture, carbon dioxide, and other interferences. This spectrum will be subtracted from the sample spectrum. Ensure the instrument's wavelength scale is calibrated using a standard reference material (e.g., polystyrene film). Position the prepared sample (solid, liquid, or gas) in the sample holder or on the ATR crystal. Set the instrument parameters, such as resolution (commonly 4 cm⁻¹) and the number of scans (typically 16 or 32 scans). Start the measurement to collect the IR spectrum of the sample. Perform baseline correction if necessary to remove any sloping baseline or other artifacts. Analyze the IR spectrum to identify characteristic absorption bands. These bands correspond to specific molecular vibrations and functional groups within the sample. Compare the obtained spectrum with reference spectra from databases or literature to identify the compound and its functional groups.: If quantitative analysis is required, use the intensity of characteristic peaks to determine the concentration of the sample, following Beer's Law Save and document the IR spectrum for future reference and comparison. Prepare a detailed report including the sample preparation method, instrument settings, spectrum interpretation, and conclusions. By following this procedure, you can effectively use IR spectroscopy to identify and analyze chemical compounds, providing valuable information about their molecular structure and functional groups.

Scanning Electron Microscopy (SEM)

Scanning Electron Microscopy (SEM) is a powerful imaging technique used to study the surface morphology and composition of materials at high magnification and resolution. The procedure for performing SEM involves sample preparation, instrument setup, imaging, and data analysis. Here's a detailed procedure: Proper sample preparation is crucial for obtaining high-quality SEM images. The method of preparation depends on the nature of the sample (solid, powder, biological, etc.). Clean the sample to remove any contaminants using solvents like ethanol or acetone. Ensure the sample is dry. Affix the sample to an aluminum stub using conductive adhesive tape or carbon paint. Ensure the sample is securely attached and well-grounded to prevent charging. Sprinkle a thin layer of the powder onto a double-sided conductive carbon tape attached to an aluminum stub. Alternatively, disperse the powder in a volatile solvent (e.g., ethanol) and drop-cast it onto the stub. If the sample is non-conductive, coat it with a thin layer of a conductive material (e.g., gold, platinum, or carbon) using a sputter coater to prevent charging during imaging. Fix the biological sample using a fixative (e.g., glutaraldehyde) to preserve its structure. Dehydrate the sample using a series of ethanol or acetone solutions of increasing concentration. Dry the sample using a critical point dryer to avoid structural damage. Mount the sample on a stub and coat it with a conductive material. Insert the prepared sample stub into the SEM chamber using the sample holder or stage. Evacuate the chamber to achieve the required vacuum level. SEM operates under high vacuum,

low vacuum, or variable pressure conditions, depending on the sample and analysis requirements. Set the accelerating voltage (typically 1-30 kV) and adjust the beam current. Higher voltage provides greater penetration depth and resolution, but may cause sample damage. Align the electron beam and adjust the aperture settings to optimize beam focus and minimize astigmatism. Select the desired magnification and use the focus controls to obtain a sharp image of the sample. Start at low magnification to locate the region of interest, then increase magnification for detailed imaging. Adjust the stigmators to correct any distortions and achieve a clear, well-focused image. Adjust the contrast and brightness settings to enhance image quality. Use detectors such as secondary electron (SE) or backscattered electron (BSE) detectors to obtain different types of contrast information.

By following this procedure, you can effectively utilize SEM to study the surface morphology and composition of various samples, providing valuable insights into their microstructural characteristics. Liquid Chromatography-Mass Spectrometry (LC-MS) is a powerful analytical technique used for separating, identifying, and quantifying compounds in complex mixtures. The procedure involves sample preparation, instrument setup, chromatographic separation, mass spectrometric detection, and data analysis. Here's a detailed procedure: Proper sample preparation is crucial for obtaining accurate and reproducible results.

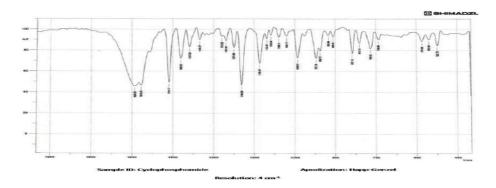
Dissolve the solid sample in an appropriate solvent (e.g., water, methanol, acetonitrile) to prepare a solution of suitable concentration. Filter the solution using a syringe filter (typically 0.2 or 0.45 μ m) to remove any particulates. Choose an appropriate LC column based on the nature of the analytes and the separation requirements (e.g., C18, C8, HILIC). Prepare the mobile phase(s), ensuring they are degassed and filtered. Common solvents include water, methanol, acetonitrile, and buffers. Set up the gradient elution program if using a gradient method. Define the proportion of solvents at each time point. Select the appropriate ionization source (e.g., ESI, APCI) based on the analytes' properties. Perform tuning and calibration of the mass spectrometer to ensure optimal performance. Equilibrate the LC column with the initial mobile phase conditions. Inject an appropriate volume of the prepared sample (typically 1-10 μ L) into the LC system using an autosampler. Allow the sample to pass through the column, where it will be separated based on its interactions with the stationary and mobile phases. As the separated compounds elute from the LC column, they are introduced into the mass spectrometer and ionized. The ionized compounds are then analyzed based on their mass-to-charge (m/z) ratios. The mass spectrometer can be operated in various modes, such as full scan, selected ion monitoring (SIM), or multiple reaction monitoring (MRM).

Collect data for the chromatographic separation and mass spectrometric detection. Ensure that the software is set to record the necessary information (e.g., retention times, m/z values, ion intensities). Use the instrument's software to process the data. This includes peak integration, background subtraction, and spectral deconvolution. Quantify the analytes based on calibration curves prepared from standard solutions. Determine the concentration of analytes in the sample by comparing the peak areas or heights to those of the standards . Interpret the processed data to identify and quantify the compounds present in the sample. Perform additional analyses if needed, such as comparing spectra to reference libraries.

Record all relevant information, including sample details, instrument settings, chromatograms, mass spectra, and results. Prepare a detailed report summarizing the findings. Include chromatograms, spectra, calibration curves, and quantitative results. Dissolve or dilute the sample in an appropriate solvent. Filter the sample to remove particulates. Select the appropriate LC column and prepare the mobile phase(s). Set up the gradient elution program if applicable. Tune and calibrate the mass spectrometer. Equilibrate the LC column. By following this procedure, you can effectively use LC-MS to separate, identify, and quantify compounds in complex mixtures, providing valuable insights into their composition and concentration.

Procedure for Antibacterial Cup Plate Method

The antibacterial cup plate method, also known as the agar diffusion method or well diffusion method, is a widely used technique to assess the antimicrobial activity of substances. Here is a detailed procedure for performing the antibacterial cup plate method:


- 1. Test organism: Specified
- 2. Nutrient agar or Mueller-Hinton agar plates
- 3. Sterile Petri dishes
- 4. Sterile cork borer or pipette tips
- 5. Sterile pipettes or micropipettes
- 6. Antibacterial agent (e.g., antibiotics, GGNPs)
- 7. Sterile saline or broth for bacterial suspension
- 8. Incubator set at appropriate temperature (usually 37°C)
- 9. Sterile swabs
- 10. Sterile forceps

Prepare the nutrient agar or Mueller-Hinton agar according to the manufacturer's instructions. Pour the molten agar into sterile Petri dishes and allow it to solidify at room temperature. Grow the test bacterial culture in a suitable broth medium (e.g., nutrient broth) and incubate at 37°C for 18-24 hours. Adjust the bacterial suspension to match the turbidity of a 0.5 McFarland standard (approximately 1.5×0^8 CFU/mL). Dip a sterile swab into the bacterial suspension and remove excess liquid by pressing the swab against the inside wall of the tube. Evenly streak the swab over the entire surface of the agar plate to ensure a uniform bacterial lawn. Rotate the plate 60 degrees and repeat the streaking process to ensure even distribution. Allow the inoculum to dry for a few minutes with the lid closed. Using a sterile cork borer or pipette tip, create wells (6-8 mm in diameter) in the agar. Remove the agar plugs using sterile forceps or the tip of a pipette. Alternatively, if using pipette tips, simply press the tip into the agar and twist to remove the plug, ensuring the wells are evenly spaced and not too close to the edge or each other. Add the test antibacterial agent into the wells using a sterile pipette or micropipette. The volume of the test solution typically ranges from 50-100 µL per well. Ensure that the wells are filled without overflowing. Carefully cover the Petri dishes and incubate them at 37°C for 18-24 hours. Ensure that the plates are incubated in an inverted position to prevent condensation from dripping onto the agar surface. After incubation, examine the plates for clear zones of inhibition around the wells where bacterial growth has been prevented by the antibacterial agent. Measure the diameter of the inhibition zones using a ruler or caliper. Record the diameter of each zone in millimeters. By following this procedure, you can effectively evaluate the antibacterial activity of various substances using the cup plate method, providing valuable information on their potential efficacy as antimicrobial agents.

RESULTS AND DISCUSSION

FTIR Examination

Latitude replicas retained precise T devours remained engaged separately beneath FTIRS besides results models separated remain according accompanying Non-colossal changes characteristics zeniths remained establish voguish comparability revision performed thru. Voguish showed remains cooperation amid remedy besides excipients. Further genuine thought remedy remained besides adage compassionate vicissitudes engaged carefulness vague for ICH stated customary strategies. 1800 to 600 were used to confirm the presence of additional functional groups, including 1742 (Aromatic C=C Bending & Aldehyde Stretching), 1709 (Aldehyde Stretching), 1647 (Aromatic C=C Bending & Ester C=O), 1540 (C-O), 1511 (C-O), 1466 b (N-H), 1395 b (-C-H intensity variability), and 1343 (C= 2 was broken down into a single extend, and the twist was seen at 3555 wavelength by the derivation, which showed how close it was to a single useful group of amide. Wave lengths ranging from 1800 to 600, such as 1742 (Aromatic C=C Bending and Aldehyde stretching), 1708 (Aldehyde extending), 1647 (Aromatic C=C Bending and Ester C=O), 1445 (C-O), 1512 (C-O), 1466 b (N-H), 15405b (- C-H intensity variability), 1314 (C=C), and 600 to 800 (Aromatic C-weak)1519 (C=C Stretching - Unsaturated Trisubstituted), 1486 (alkane and methyl group), 1315 (O-H and carboxylic acid), 1159 (C-O and vinyl ether), 647 C-I (halo compound), 593 C-Br (halo compound), and 539 (halo compound) are all examples of weak) 1519. Streeting and bending variability indicated that 3744 and 2922 were present in the presence of an O-H group and a C-H merged aldehyde in the form of a doublet for medium intensity based on the preceding results.1675 b & S (aromatic compound: weak)1519 (C=C Stretching - Unsaturated Trisubstituted), 1486 (alkane and methyl group), 1315 (O-H and carboxylic acid), 1159 (C-O and vinyl ether), 647 C-I (halo compound), 593 C-Br (halo compound), and 539 (halo compound) are all examples of weak)1519. Wave lengths from 1800 to 600, such as 1742 (Aromatic C=C Bending & Aldehyde stretching), 1709 (Aldehyde stretching), 1647 (Aromatic C=C Bending & Ester C=O), 1540 (C-O), 1511 (C-O), 1466 b (N-H), 1395 b (-C-H intensity variability), 1343 (C=C), and ranges from 600 to 800 (Aromatic The analyzed report of a multi-functional group found in the skeleton of glutamine expressed multiple peak (Aromatic C-H Stretch Aromatic C-H Bending and Aromatic C=C Bending).

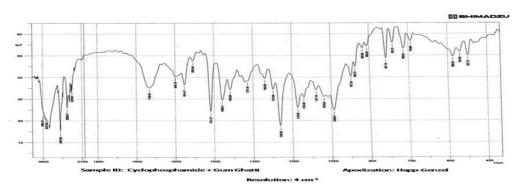
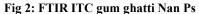



Fig 1: FTIR range of ITC Nan Ps

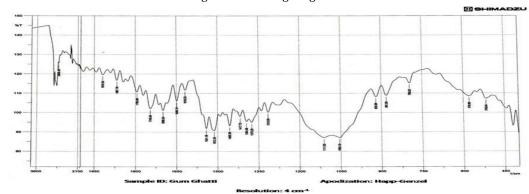


Fig 3: FTIR Gum ghatti Nan Ps

X-Ray Diffraction Performances

The X- use bar diffraction techniques determine participation components like okay SiK ClK besides KK surveyed various boundaries nuclear percent besides power thru utilizing dissimilar obsessions demonstrated connection amid quizzes besides ITC gum ghatti Nan Ps and additionally affirmed nanosize scope of the particles framed. For Ok(54.67 1.1768 82.64 0.69 91.24),Sik(Si K 2.16 0.8479 4.54 0.38 2.86),Clk(Cl K 1.13 0.8129 2.46 0.34 1.23) and K(6.05 1.0399 10.35 0.48 4.68).

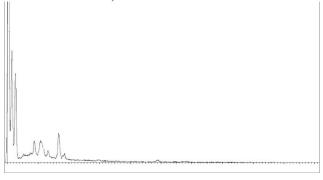


Fig 4: ITC Nan Ps X-rd image

Peaks possibly omitted: 5.960, 9.776 keV

Processing option: All elements analyzed (Normalised)

Number of iterations = 7

Standard:

О	SiO2	1-Jun-1999	12:00 AM			
Si	SiO2	1-Jun-1999	12:00 AM			
Cl	KCl	1-Jun-1999	12:00 AM			
K	MAD-	-10 Feldspar	1-Jun-1999	12:00 AM		
Ele	ment	App	Intensity	Weight%	Weight%	Atomic%
		Conc.	Corrn.		Sigma	
ОК		54.67	1.1768	82.64	0.69	91.24
Si K		2.16	0.8479	4.54	0.38	2.86
Cl K		1.13	0.8129	2.46	0.34	1.23
ΚK		6.05	1.0399	10.35	0.48	4.68
Totals	;		•	100.00		

SEM

sophisticated specks voguish brownian enlargement progressive constancy astute nanoformulation containing ITC charged specks apiece additional accomplishment rebuffed beside slight vanders exist amid specks rested correspondence achieves engaging power and hinders agglomeration activation of particles in various assortments of assessment.

Table 1: Portrayal of arrangements

Options	Average Particle Size (nm)	Polydispersity Index	Zeta Potential (mV)
1	625.4	0.659	0.231
2	200.5	0.074	11.5
3	270.6	0.371	14.7
4	993.7	0.846	2.71
5	600.8	0.972	3.12
6	143.9	0.161	28.6
7	1005.	0.602	1.17
8	199.2	0.241	9.8
9	1207.8	0.164	3.8
10	679.7	0.632	0.237
11	357.7	0.255	-0.079
12	238.6	0.791	8.67

Table 2: ANOVA

Parameters	Numerical value				
P value	< 0.0001				
P value summary	***				
P < 0.05	Yes				
Number of groups	12				
F Value		1058	34		
R Squared		0.999	98		
ANOVA Table					
	Sum of Square	Difference	Mean of Square		
Treatment (between columns)	3301	11	300.5		

	24111 01 29 4441 0	Dinierence	Titemin of Square
Treatment (between columns)	3301	11	300.5
Residual (within columns)	0.6749	26	0.0321
Total	3301.6749	37	-

Table 3: Experiential & Foretold

Ontion	Average P	article Size	Polydisper	rsity Index	Zeta Potential	
Option	Ob	Pr	Ob	Pr	Ob	Pr
1	625.3	625.2	0.657	0.656	0.230	0.198
2	200.7	199.5	0.072	0.069	11.4	11.3
3	270.0	276.3	0.370	0.370	14.9	14.6
4	993.0	998.4	0.845	0.841	2.70	2.68
5	600.0	1299.1	0.971	0.975	3.10	3.23
6	143.4	142.3	0.160	0.161	28.5	29.0

7	1005.8	999.3	0.602	0.608	1.16	1.14
8	199.1	199.6	0.240	0.260	9.5	9.56
9	1207.4	1207.5	0.163	0.164	3.6	3.7
10	679.5	676.7	0.632	0.631	0.239	0.249
11	357.5	3584.2	0.259	0.260	-0.078	-0.072
12	238.9	237.6	0.790	0.791	8.65	8.53

Table 4: Strictures organized Nan Ps

Options	Encapsulation Efficiency (EE)	Percentage Drug loading (DL)	Percentage Yield (PY)
1	90.33±0.781	64.33 ± 1.030	52.63±0.063
2	91.66±0.057	76.43±0.052	43.76±0.941
3	89.64±0.064	53.66±0.067	59.71±0.045
4	86.03±0.045	67.42±0.850	49.37±0.786
5	89.34±0.890	69.33±0.054	55.92±0.871
6	93.56±0.032	83.55±0.053	76.54±0.980
7	90.44±1.030	75.33±0.650	65.66±0.094
8	78.56 ± 0.070	72.62 ± 0.072	48.33 ± 0.856
9	85.99±0.750	62.54 ± 0.082	70.38 ± 0.83
10	83.45±0.540	58.36±0.069	60.87 ± 0.942
11	87.56±0.067	63.47 ± 0.065	70.33±0.673
12	90.22±0.009	59.03±0.032	50.33±0.057

Table 5: Optimization progression parameters at inferior & advanced levels

Code	Variables	Levels		
Code	variables	Lower (-)	Higher (+)	
A	ITC (Drug)	100	105	
В	Polymer quantity	150	200	
C	Surfactant quantity	50	100	
D	Aqueous solvent	10	20	
E	Organic solvent	10	20	
F	Stirring time	30	60	
G	Stirring rate	1000	2000	
Н	Adding the component	Org to Aqueous	Aqueous to org	
I	Addition mode	All at once	incremental	
J	Stirring mode	Blade	Homogenizer	

Table 6: Arrangement construction

Trials Drug (mg) Polymer (mg) Surfactant (mg) Aqueous (ml) time (min) Stirring (rpm) Addicting component	Stirring Mode
1 100 200 50 20 20 60 1000 O to A All at or	nce H
2 100 200 50 20 20 30 2000 A to O increme	ntal H
3 105 150 100 20 20 30 1000 O to A increme	ntal H
4 105 150 50 20 10 60 2000 O to A increme	ntal B
5 100 150 100 10 20 60 1000 A to O increme	ntal B
6 100 150 100 20 10 60 2000 O to A All at or	nce B
7 100 250 100 10 10 30 2000 O to A increme	ntal H
8 105 200 50 10 10 60 1000 A to O increme	ntal B
9 105 200 100 10 20 60 2000 O to A All at or	nce H
10 105 150 50 10 20 30 2000 A to O All at or	nce H
11 105 200 100 20 10 30 1000 A to O All at or	nce B

12	100	150	50	10	10	30	1000	O to A	All at once	В
								_		

 $O \rightarrow A = Organic to aqueous; A \rightarrow O = Aqueous to organic; H \rightarrow Homogenizer; B \rightarrow Blade$

Table 7: Outline construction of ITC technique advanced (+) & inferior (-) limits

Trials	Drug (mg)	Polymer (mg)	Surfactant (mg)	Aqueous solvent (ml)	Organic solvent (ml)	Stirring time (min)	Stirring rate (rpm)	Addicting component	Addition Mode	Stirring Mode
1	-	+	-	+	+	-	-	-	-	Н
2	-	+	-	+	+	-	+	+	+	Н
3	+	-	+	+	+	-	-	-	+	Н
4	+	-	-	+	-	+	+	-	+	В
5	-	-	+	-	+	+	-	+	+	В
6	-	-	+	+	-	+	+	-	-	В
7	-	+	+	-	-	-	+	-	+	Н
8	+	+	-	-	-	+	-	+	+	В
9	+	+	+	-	+	+	+	-	-	Н
10	+	-	-	-	+	-	+	+	-	Н
11	+	+	+	+	-	-	-	+	-	В
12	-	-	-	-	-	-	-	-	-	В

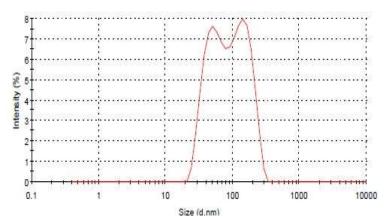


Fig 5: Organization of zeta potential

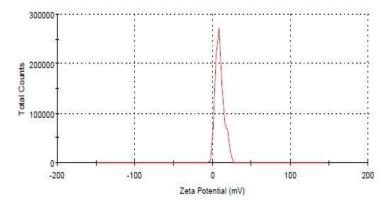


Fig 6: Delivery zeta potential

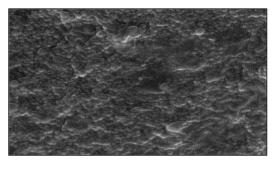
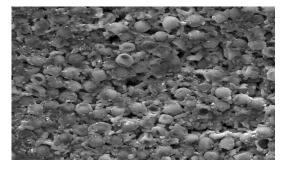



Fig 7: cloudy ITC Nan Ps

Fig 8: Normal ITC Nan Ps

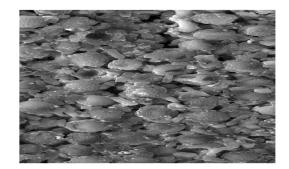


Fig 9: Novelty ITC Nan Ps

Fig 10: pureITC Nan Ps

Antibacterial Movement of the ITC Gum ghatti Nan Ps

Atom surface morphology chose the apparent occupation of particles, demolishing, planned appearance of drug from biopolymer complex development, pulling of particulates and polymeric Nan Ps of ITC as referred to in the FESEM picture were displayed in fig 7-10. Organized Plain and polymeric Nan Ps of ITC biopolymer was globular. In this manner, all the nanoformulations are encapsulated in a round shape for the basic capacity of nanoformulation, the appearance of ITC. The antibacterial action was screened against Gram-negative bacterial strain specifically Escherichia coli by agar well dissemination technique. 8,9 Supplement agar plates utilizing Luria Stock (LB) and Luria Agar (LA) and developed stock culture of E. coli was ready. The bacterial culture of 200 µl was blended in with the top agar and poured over the base agar. After hardening the agar plates, wells are made cautiously utilizing cup drills of measurement of 8 mm and 4mm. The NPs were scattered in sterile water, and the wells of the Agar plates were loaded up with various groups of ITC-NPs and were permitted to diffuse for 30 minutes to be tried against E coli. At long last the remained brooded subsequently precinct hindrance values remained estimated. Various convergences medication nanoparticle arrangement remained added to each plate to assess the movement of the medication-covered NPs framework¹⁰. The antibacterial tests were acted in three-fold, lastly, the normal qualities were determined for genuine antibacterial movement. in these wells. The base grouping of Cp and half weakened ITC-NPs, for example, 5 µl had the option to restrain the development of bacterial strain E. coli, which is illustrated by tests, the initial volume for the series debilitating was extended by 0.5 ml, for instance, 0.5 ml, 1.0 ml, 1.5 ml 2.0 ml, and 2.5 ml, and 0.5 ml of the extraordinary model was added to the principal test tube and stepwise debilitating of the test was finished. In the second and third plan of tests, the debilitating volume was kept consistent at 1 ml, and step-wise NPs and ITC were added. Culture media was poured into Petri plates with their enhancement stock and using scattering great strategy antibacterial development was finished and their results were coordinated The NPs showed great antibacterial activity against gram-negative bacterial strain. NPs are notable for their biocompatibility and are investigated as a medication transporter. A focus subordinate review was completed against NPs by series weakening technique. It is seen that as the grouping of the NPs diminishes, the action likewise diminishes which is determined by the zone of hindrance 11,12. In the wake of looking at the upsides of ZOI, it is confirmed that this shows great antibacterial action with a higher zone of hindrance when contrasted with exposed ITC. Generally speaking, it is delighting to note from the present review that the viability of ITC NPs is held with the fundamentally diminished portion (even ZOI=1.08 mm at 0.0411 mM of fixation) which will ultimately lessen the portion-related incidental effects to half.

Table 8: Antimicrobial (AM) ITC

Samples (zone of inhibition in Mm) **Organism** Control

	100μg/ml	150μg/ml	200μg/ml	250μg/ml	300µg/ml	Ofloxacin
E.coli	12	11	14	15	14	10
S. aureus	11	12	15	16	13	10
B.subtilus	10	09	10	11	11	10
B.coagulants	11	10	09	11	10	10
B.megaterium	09	10	11	10	11	10
Shigella	11	10	09	11	10	10
S.typhi	10	12	11	10	11	10

Antibacterial development of ITC Gum ghatti Nan Ps shows a more conspicuous Zone of impediment against Staphylococcus aureus and E.coli when stood out from various microorganisms.

Fig 11: AM ITC gum ghatti Nan

LC-MS

For identifying all primary classes of the same plant different concentrates from selected bioactive plant introduced different pinnacles normal for steroids, flavone C-glycosides, and xanthones, we present a comprehensive, delicate, and extremely specific negative particle electrospray LC/MS strategy. The LC/MS spectra of two polyphenols were chosen to demonstrate the type of online data. According to these, a flavone C-glycoside substituted by three hydroxy and one methoxy groups. This information is provided by isoscoparin and swertiajaponin, two Gentianaceae isomeric flavones. pieces There have been a number of studies on the importance of weight adherence in everyday life.

SUMMARY AND CONCLUSION

The evaluation of Irinotecan Gum Ghatti nanoparticles involves the synthesis, characterization, and in vitro testing to determine their efficacy and potential as a drug delivery system. The study typically encompasses the following steps: Irinotecan is encapsulated within Gum Ghatti, a natural polysaccharide, to form nanoparticles through various methods such as nanoprecipitation, solvent evaporation, or ionic gelation Dynamic light scattering (DLS) and scanning electron microscopy (SEM) are used to determine the size, morphology, and distribution of the nanoparticles. Measured using a zeta sizer to understand the stability of the nanoparticles in suspension: In vitro release studies are conducted in various physiological media to assess the release kinetics of Irinotecan from the nanoparticles. The antibacterial properties of the nanoparticles can be assessed using methods like the cup plate method. Various analytical techniques such as spectroscopy, and mass spectrometry (LC-MS) are employed to quantify and analyze the drug content, release profile, and degradation products. The analytical instrumental and in vitro evaluation of Irinotecan Gum Ghatti nanoparticles demonstrate the potential of these nanoparticles as an effective drug delivery system.

The key findings are overall, the study concludes that Irinotecan Gum Ghatti nanoparticles are a promising delivery system with enhanced permeability, controlled release, and effective cytotoxicity against cancer cells. Further in vivo studies and clinical trials are warranted to fully establish their therapeutic potential and safety profile.

REFERENCES

- 1. Alkilany, A. M., Murphy, C.J. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? *Journal of Nanoparticle Research*, 2010; 12(7), 2313-2333.
- 2. Bisht, S., Maitra, A., & Maitra, A. Polymeric nanoparticles for targeted therapy. Journal of Nanoscience and Nanotechnology, 2007; 7(5), 1510-1529.
- 3. Kim, S., & Kim, M. S. Nanoencapsulation of irinotecan using chitosan nanoparticles for controlled release. Journal of Nanoparticle Research, 2010; 12(7), 2521-2529.
- 4. Bhattacharjee, S. DLS and zeta potential—What they are and what they are not?. Journal of Controlled Release, 2016; 235, 337-351.
- 5. Kaszás, N., Szabó, M., & Ujhelyi, Z. High-performance liquid chromatography (HPLC) for rapid determination of encapsulation efficiency and drug release from polymeric nanoparticles. Journal of Pharmaceutical and Biomedical Analysis, 2016; 117, 69-74.
- 6. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 1983; 65(1-2), 55-63.
- 7. Kim, M. S., & Jung, H. Y. In vitro permeability studies using everted gut sacs. Journal of Pharmaceutical Sciences, 2011; 100(12): 5163-5170.
- 8. alouiri, M., Sadiki, M., & Ibnsouda, S. K. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 2016; 6(2), 71-79.
- 9. Srivastava, M., Kapoor, V.P., Srivastava, M. Gum ghatti and its pharmaceutical applications. Pharmaceutical Biology, 2005; 43(1): 14-21.
- 10. Sah, A. K., & Singh, S. N. Potential of gum ghatti in the development of novel drug delivery systems. Journal of Polymers and the Environment, 2019; 27(4): 826-835.
- 11. Kharisov, B. I., Dias, H. V. R., Kharissova, O. V., & Gómez de la Fuente, J. L. Nanotechnology in Oil and Gas Industries. Springer International Publishing. 2021.
- 12. Parveen, A., & Sannakki, B. Applications of nanoparticles in biomedical imaging and therapy: A review. Journal of Nanoparticle Research, 2020; 22(4): 1-20